A Model Based Approach for Expressions Invariant Face Recognition
نویسندگان
چکیده
This paper describes an idea of recognizing the human face in the presence of strong facial expressions using model based approach. The features extracted for the face image sequences can be efficiently used for face recognition. The approach follows in 1) modeling an active appearance model (AAM) parameters for the face image, 2) using optical flow based temporal features for facial expression variations estimation, 3) and finally applying classifier for face. The novelty lies not only in generation of appearance models which is obtained by fitting active shape model (ASM) to the face image using objective functions but also using a feature vector which is the combination of shape, texture and temporal parameters that is robust against facial expression variations. Experiments have been performed on CohnKanade facial expression database using 62 subjects of the database with image sequences consisting of more than 4000 images. This achieved successful face recognition rate up to 91.17% using binary decision tree (BDT), 98.6% using Bayesian Networks (BN) with 10-fold cross validation in the presence of six different facial expressions.
منابع مشابه
Expression-invariant three-dimensional face recognition
One of the hardest problems in face recognition is dealing with facial expressions. Finding an expression-invariant representation of the face could be a remedy for this problem. We suggest treating faces as deformable surfaces in the context of Riemannian geometry, and propose to approximate facial expressions as isometries of the facial surface. This way, we can define geometric invariants of...
متن کاملRobust Expression-Invariant Face Recognition from Partially Missing Data
Recent studies on three-dimensional face recognition proposed to model facial expressions as isometries of the facial surface. Based on this model, expression-invariant signatures of the face were constructed by means of approximate isometric embedding into flat spaces. Here, we apply a new method for measuring isometry-invariant similarity between faces by embedding one facial surface into ano...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملExpression-Invariant 3D Face Recognition
We present a novel 3D face recognition approach based on geometric invariants introduced by Elad and Kimmel. The key idea of the proposed algorithm is a representation of the facial surface, invariant to isometric deformations, such as those resulting from different expressions and postures of the face. The obtained geometric invariants allow mapping 2D facial texture images into special images...
متن کامل